高中数学知识点总结归纳高中数学立体几何一直是数学的一大难点立体几何生是高考教学中的重点,同时也是高考试卷中的必考题目今天肖博就为大家整理高中数学知识点总结归纳之立体几何,希望能够帮助到同学1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.。
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
4.会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).空间几何体的表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式.空间点、直线、平面之间的位置关系1.理解空间直线、平面位置关系的定义.
2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.空间中的平行关系以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.
空间中的垂直关系以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.空间向量及其运算1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.
2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.立体几何中的向量方法1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.
1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.